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STRICTLY CONVEX ENTROPY AND ENTROPY STABLE

SCHEMES FOR REACTIVE EULER EQUATIONS

WEIFENG ZHAO

Abstract. This paper presents entropy analysis and entropy stable (ES) fi-
nite difference schemes for the reactive Euler equations with chemical reactions.
For such equations we point out that the thermodynamic entropy is no longer
strictly convex. To address this issue, we propose a strictly convex entropy
function by adding an extra term to the thermodynamic entropy. Thanks to
the strict convexity of the proposed entropy, the Roe-type dissipation oper-
ator in terms of the entropy variables can be formulated. Furthermore, we
construct two sets of second-order entropy preserving (EP) numerical fluxes
for the reactive Euler equations. Based on the EP fluxes and the Roe-type
dissipation operators, high-order EP/ES fluxes are derived. Numerical exper-
iments validate the designed accuracy and good performance of our schemes
for smooth and discontinuous initial value problems. The entropy decrease of
ES schemes is verified as well.

1. Introduction

This paper is concerned with the reactive Euler equations describing inviscid
compressible flow with chemical reactions, which are fundamental for modeling
detonations. In one dimension (1D), these equations read as [9, 12]

(1.1) ∂t

⎛
⎜⎜⎜⎜⎜⎝

ρ

ρu

ρE

ρY

⎞
⎟⎟⎟⎟⎟⎠+ ∂x

⎛
⎜⎜⎜⎜⎜⎝

ρu

ρu2 + p

ρEu+ pu

ρuY

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0

0

0

ω

⎞
⎟⎟⎟⎟⎟⎠ ,

where ρ is the fluid density, u is the velocity, p is the pressure, E is the total
energy and Y is the reactant mass fraction. The source term is assumed to be in
an Arrhenius form

ω = −K̃ρY e−T̃ /T ,

where T = p/ρ is the temperature, T̃ > 0 is the activation constant temperature and

K̃ > 0 is a constant rate coefficient. The equation of state is ρE = 1
2ρu

2+ p
γ−1+qρY

with q > 0 the heat release of reaction and γ the specific heat ratio.
Generally, for N chemical species there should be N species conservation equa-

tions for Yi, i = 1, 2, . . . , N , with Yi being the mass fraction of species i. The
above reactive Euler equations (1.1) are a simplified form under the assumption
that there are only two species present, reacted and unreacted species, and that
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736 WEIFENG ZHAO

the unreacted species is converted to reacted species by a one-step irreversible
chemical reaction [10,12]. Though relatively simple in form, (1.1) can give compli-
cated stable and unstable wave patterns, which have been observed in experiments
[4, 10]. Due to the practical importance, the reactive Euler equations have been
widely investigated both theoretically and numerically in the past decades; see e.g.
[4, 7, 9, 10, 13, 20, 21, 33].

Eqs. (1.1) are a system of hyperbolic balance laws and degenerate to the Euler
equations when Y = 0. For these equations as hyperbolic systems, it is well known
that entropy conditions are necessary to determine the correct weak solution across
a shock. Then it is natural for corresponding numerical schemes to satisfy a dis-
crete version of the entropy condition in computations. Actually, such schemes for
hyperbolic conservation laws have been well developed since the pioneer work of
Osher and Tadmor [26, 27, 31, 32]. In particular, Tadmor [31] proposed a frame-
work to construct second-order entropy conservative (EC) fluxes, which are locally
consistent with the given entropy conservation. Furthermore, entropy stable (ES)
fluxes are obtained by adding dissipation operators to the EC fluxes [31]. Using
these fluxes as building blocks, high-order EC/ES schemes are designed in [25] and
[17]. Though the framework in [31] is quite general, some additional efforts are
needed to obtain explicit expressions of the EC fluxes. This issue is addressed in
[22,28] for the compressible Euler equations by choosing a suitable set of algebraic
variables. Following the procedure of [22, 28], EC fluxes are derived for the shal-
low water equations [15], magnetohydrodynamic systems [6, 34, 35] and relativistic
hydrodynamics [11]. Moreover, numerical fluxes that are both EC and kinetic-
energy preserving (KEP) are proposed in [5] for the Euler equations. Except for
those based on the framework in [31], ES schemes have also been developed via the
summation-by-parts property; see e.g. [8, 14, 18, 19].

In this paper, we aim to construct ES finite difference schemes for the reactive
Euler equations in both one- and two-dimensions on a Cartesian mesh. First,
we point out that the thermodynamic entropy is no longer strictly convex for the
reactive Euler equations. To address this issue, we propose a strictly convex entropy
function by adding an extra term ρY 2 to the thermodynamic entropy. As a result, a
new entropy-entropy flux pair is obtained for the reactive Euler equations. Thanks
to the strict convexity of the proposed entropy, the Roe-type dissipation operator
in terms of the entropy variables can be formulated [28]. Note that such dissipation
operators are not available based on the thermodynamic entropy, as it is not strictly
convex. Additionally, for the reactive Euler equations as hyperbolic balance laws,
the strict convexity of entropy function is crucial for the global existence of solution
[36]. The present strictly convex entropy may be helpful for the theoretical analysis
of the reactive Euler equations.

Furthermore, we construct two sets of second-order entropy preserving (EP)
fluxes by extending those in [5,28] for the Euler equations within the framework of
[31]. Here we use EP instead of EC due to the source term in the entropy equation.
In particular, the EP fluxes extended from [5] are also KEP. With the EP fluxes and
the above Roe-type dissipation operators, high-order EP/ES fluxes are derived fol-
lowing [17,25], where the sign-preserving ENO [16] and WENO [3] reconstructions
are employed for high-order dissipation operators. Numerical experiments in 1D
and 2D not only validate the designed accuracy of our schemes but also demonstrate

Licensed to Univ of Maryland, College Park. Prepared on Thu Aug 25 00:40:54 EDT 2022 for download from IP 128.8.9.2.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ENTROPY STABLE SCHEMES FOR REACTIVE EULER EQUATIONS 737

their good performance for problems with discontinuities. The entropy decrease of
ES schemes is verified as well.

The rest of the paper is organized as follows. In Section 2, we present a strictly
convex entropy for the reactive Euler equations. In Section 3, we derive ES schemes
in 1D and extensions to 2D are given in Section 4. Section 5 provides some numerical
experiments to validate our schemes. Finally, some conclusions and remarks are
given in Section 6.

2. Strictly convex entropy for reactive Euler equations

2.1. 1D case. The 1D reactive Euler equations (1.1) can be written as

(2.1) ∂tU + ∂xF (U) = Q(U),

where

U =

⎛
⎜⎜⎜⎜⎜⎝

ρ

ρu

ρE

ρY

⎞
⎟⎟⎟⎟⎟⎠ , F (U) =

⎛
⎜⎜⎜⎜⎜⎝

ρu

ρu2 + p

ρEu+ pu

ρuY

⎞
⎟⎟⎟⎟⎟⎠ , Q(U) =

⎛
⎜⎜⎜⎜⎜⎝

0

0

0

ω

⎞
⎟⎟⎟⎟⎟⎠ .

Let s = ln(p)− γ ln(ρ) be the thermodynamic entropy and define

(2.2) η̂ =
−ρs

γ − 1
, φ̂ =

−ρus

γ − 1
,

which are the classical entropy and entropy flux for the Euler equations, respectively.
It is direct to verify for the reactive Euler equations (2.1) that

(2.3) ∂tη̂ + ∂xφ̂ =
ρ

p
qω ≤ 0,

which implies that (η̂, φ̂) may be an entropy-entropy flux pair for (2.1). However,
for (2.1) η̂ is no longer strictly convex. To see this, we compute

η̂U :=
∂η̂

∂U
=

⎛
⎜⎜⎜⎝

γ−s
γ−1 − ρu2

2p
ρu
p

−ρ
p

q ρ
p

⎞
⎟⎟⎟⎠ .

Note that the third and fourth entries of η̂U are proportional. Then the third and
fourth rows of the Hessian matrix η̂UU are proportional and thus η̂UU is singular.
This indicates that η̂ is not strictly convex.

To address the above problem, we propose the following entropy-entropy flux
pair

(2.4) η = η̂ + ρY 2, φ = φ̂+ ρuY 2

by adding ρY 2 and ρuY 2 to η̂ and φ̂, respectively. It follows from the first and
fourth equations of (2.1) that

∂t(ρY
2) + ∂x(ρuY

2) = 2Y ω ≤ 0.

With this and (2.3), we have

(2.5) ∂tη + ∂xφ = (q
ρ

p
+ 2Y )ω ≤ 0.
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On the other hand, the corresponding entropy variable of η is

(2.6) V := ηU =

⎛
⎜⎜⎜⎜⎜⎝

γ−s
γ−1 − ρu2

2p − Y 2

ρu
p

−ρ
p

q ρ
p + 2Y

⎞
⎟⎟⎟⎟⎟⎠

and the Hessian matrix is given by

(2.7) ηUU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ
γ−1

1
ρ

+ (γ − 1) ρu4

4p2
+ 2Y 2

ρ
−(γ − 1) ρu3

2p2
− 1

p
+ (γ − 1) ρu2

2p2
q 1
p

− (γ − 1)q ρu2

2p2
− 2Y

ρ

−(γ − 1) ρu3

2p2
1
p

+ (γ − 1) ρu2

p2
−(γ − 1) ρu

p2
(γ − 1)q ρu

p2

− 1
p

+ (γ − 1) ρu2

2p2
−(γ − 1) ρu

p2
(γ − 1) ρ

p2
−(γ − 1)q ρ

p2

q 1
p

− (γ − 1)q ρu2

2p2
− 2Y

ρ
(γ − 1)q ρu

p2
−(γ − 1)q ρ

p2
(γ − 1)q2 ρ

p2
+ 2

ρ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The positive definiteness of the above matrix is proved as follows. Additionally,
the entropy potential of the entropy-entropy flux pair (η, φ) can be computed as
ψ := V TF − φ = ρu, which is the same as that for the Euler equations. Here the
superscript T stands for the transpose operator.

Theorem 2.1. The Hessian matrix ηUU in (2.7) is positive definite. Namely, the
entropy function η in (2.4) is strictly convex.

Proof. We prove this by showing that all the leading principal minors of ηUU are
positive. Note that the leading principle 3 × 3 submatrix of ηUU is actually A3 :=

AEuler+diag(2Y 2

ρ , 0, 0), where AEuler is the Hessian matrix of the classical entropy η̂

for the Euler equations and thereby is positive definite. Then A3 is positive definite
and the first three leading principal minors of ηUU are positive. Next we only need
to show that the fourth leading principal minor, i.e., the determinant of ηUU , is
positive. To do this, we compute

|ηUU | =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ
γ−1

1
ρ

+ (γ − 1) ρu4

4p2
+ 2Y 2

ρ
−(γ − 1) ρu3

2p2
− 1

p
+ (γ − 1) ρu2

2p2
q 1
p

− (γ − 1)q ρu2

2p2
− 2Y

ρ

−(γ − 1) ρu3

2p2
1
p

+ (γ − 1) ρu2

p2
−(γ − 1) ρu

p2
(γ − 1)q ρu

p2

− 1
p

+ (γ − 1) ρu2

2p2
−(γ − 1) ρu

p2
(γ − 1) ρ

p2
−(γ − 1)q ρ

p2

q 1
p

− (γ − 1)q ρu2

2p2
(γ − 1)q ρu

p2
−(γ − 1)q ρ

p2
(γ − 1)q2 ρ

p2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ
γ−1

1
ρ

+ (γ − 1) ρu4

4p2
+ 2Y 2

ρ
−(γ − 1) ρu3

2p2
− 1

p
+ (γ − 1) ρu2

2p2
q 1
p

− (γ − 1)q ρu2

2p2
− 2Y

ρ

−(γ − 1) ρu3

2p2
1
p

+ (γ − 1) ρu2

p2
−(γ − 1) ρu

p2
(γ − 1)q ρu

p2

− 1
p

+ (γ − 1) ρu2

2p2
−(γ − 1) ρu

p2
(γ − 1) ρ

p2
−(γ − 1)q ρ

p2

−2Y
ρ

0 0 2
ρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ
γ−1

1
ρ

+ (γ − 1) ρu4

4p2
+ 2Y 2

ρ
−(γ − 1) ρu3

2p2
− 1

p
+ (γ − 1) ρu2

2p2
q 1
p

− (γ − 1)q ρu2

2p2
− 2Y

ρ

−(γ − 1) ρu3

2p2
1
p

+ (γ − 1) ρu2

p2
−(γ − 1) ρu

p2
(γ − 1)q ρu

p2

− 1
p

+ (γ − 1) ρu2

2p2
−(γ − 1) ρu

p2
(γ − 1) ρ

p2
−(γ − 1)q ρ

p2

−2Y
ρ

0 0 2
ρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 2
Y

ρ

∣∣∣∣∣∣∣∣∣∣∣

−(γ − 1) ρu3

2p2
− 1

p
+ (γ − 1) ρu2

2p2
q 1
p

− (γ − 1)q ρu2

2p2
− 2Y

ρ

1
p

+ (γ − 1) ρu2

p2
−(γ − 1) ρu

p2
(γ − 1)q ρu

p2

−(γ − 1) ρu

p2
(γ − 1) ρ

p2
−(γ − 1)q ρ

p2

∣∣∣∣∣∣∣∣∣∣∣
+

2

ρ
|A3|.
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Furthermore, we have

2
Y

ρ

∣∣∣∣∣∣∣∣∣
−(γ − 1)ρu

3

2p2 − 1
p + (γ − 1)ρu

2

2p2 q 1
p − (γ − 1)q ρu2

2p2 − 2Y
ρ

1
p + (γ − 1)ρu

2

p2 −(γ − 1)ρup2 (γ − 1)q ρu
p2

−(γ − 1)ρup2 (γ − 1) ρ
p2 −(γ − 1)q ρ

p2

∣∣∣∣∣∣∣∣∣

= 2
Y

ρ

∣∣∣∣∣∣∣∣∣
−(γ − 1)ρu

3

2p2 − 1
p + (γ − 1)ρu

2

2p2 q 1
p − (γ − 1)q ρu2

2p2

1
p + (γ − 1)ρu

2

p2 −(γ − 1)ρup2 (γ − 1)q ρu
p2

−(γ − 1)ρup2 (γ − 1) ρ
p2 −(γ − 1)q ρ

p2

∣∣∣∣∣∣∣∣∣

+ 2
Y

ρ

∣∣∣∣∣∣∣∣∣
−(γ − 1)ρu

3

2p2 − 1
p + (γ − 1)ρu

2

2p2 −2Y
ρ

1
p + (γ − 1)ρu

2

p2 −(γ − 1)ρup2 0

−(γ − 1)ρup2 (γ − 1) ρ
p2 0

∣∣∣∣∣∣∣∣∣
= −4

Y 2

ρ2

∣∣∣∣∣
1
p + (γ − 1)ρu

2

p2 −(γ − 1)ρup2

−(γ − 1)ρup2 (γ − 1) ρ
p2

∣∣∣∣∣
and

2

ρ
|A3| =

2

ρ
|AEuler|+

2

ρ

∣∣∣∣∣∣∣∣∣
2Y 2

ρ −(γ − 1)ρu
3

2p2 − 1
p + (γ − 1)ρu

2

2p2

0 1
p + (γ − 1)ρu

2

p2 −(γ − 1)ρup2

0 −(γ − 1)ρup2 (γ − 1) ρ
p2

∣∣∣∣∣∣∣∣∣
=

2

ρ
|AEuler|+ 4

Y 2

ρ2

∣∣∣∣∣
1
p + (γ − 1)ρu

2

p2 −(γ − 1)ρup2

−(γ − 1)ρup2 (γ − 1) ρ
p2

∣∣∣∣∣ .
Combining the above equations, we arrive at |ηUU | = 2

ρ |AEuler| > 0. Therefore, all

the leading principal minors of ηUU are positive and ηUU is positive definite. �

Remark 2.2. It will be seen in the next section that the strict convexity of the
entropy function is crucial for constructing entropy stable schemes. More specifi-
cally, it will be used to formulate the Roe-type dissipation operator in terms of the
entropy variables [28], which is not available if the entropy is not strictly convex.

Remark 2.3. According to the above analysis, for any 	 > 0, η̂ + 	ρY 2 is also a

strictly convex entropy and the corresponding entropy flux is φ̂+ 	ρuY 2.

Remark 2.4. It is direct to verify that U is orthogonal to the fourth column of
ηUU . Then it follows that UT ηUUQU = (0, 0, 0, 0) and thereby UT ηUUQUU = 0.
This relation may be helpful in the mathematical analysis of the reactive Euler
equations.

2.2. 2D case. The above entropy analysis can be directly extended to the 2D
reactive Euler equations

(2.8) ∂tU + ∂xF (U) + ∂yG(U) = Q(U),
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where

U = (ρ, ρu, ρv, ρE, ρY )T ,

F (U) = (ρu, ρu2 + p, ρuv, (ρE + p)u, ρuY )T ,

G(U) = (ρv, ρuv, ρv2 + p, (ρE + p)v, ρvY )T ,

Q(U) = (0, 0, 0, 0, ω)

and ρE = 1
2ρ(u

2 + v2) + p
γ−1 + qρY . Similar to the 1D case, η = η̂ + ρY 2, instead

of the classical entropy function η̂ = −ρs
γ−1 , is a strictly convex entropy function for

(2.8). The corresponding entropy fluxes are

(2.9) φ1 = φ̂1 + ρuY 2, φ2 = φ̂2 + ρvY 2,

where φ̂1 = −ρus
γ−1 , φ̂2 = −ρvs

γ−1 are the classical entropy flux pair for the 2D Euler

equations. It is direct to verify that

(2.10) ∂tη + ∂xφ1 + ∂yφ2 = (q
ρ

p
+ 2Y )ω ≤ 0

and the entropy variables are

(2.11) V := ηU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ−s
γ−1 − ρ(u2+v2)

2p − Y 2

ρu
p

ρv
p

−ρ
p

q ρ
p + 2Y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The Hessian matrix of η is given by

ηUU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ
γ−1

1
ρ + (γ − 1)ρ(u

2+v2)2

4p2 + 2Y 2

ρ −(γ − 1)ρ(u
2+v2)u
2p2 −(γ − 1)ρ(u

2+v2)v
2p2

−(γ − 1)ρ(u
2+v2)u
2p2

1
p + (γ − 1)ρu

2

p2 (γ − 1)ρuvp2

−(γ − 1)ρ(u
2+v2)v
2p2 (γ − 1)ρuvp2

1
p + (γ − 1)ρv

2

p2

− 1
p + (γ − 1)ρ(u

2+v2)
2p2 −(γ − 1)ρup2 −(γ − 1)ρvp2

q 1
p − (γ − 1)q ρ(u2+v2)

2p2 − 2Y
ρ (γ − 1)q ρu

p2 (γ − 1)q ρv
p2

− 1
p + (γ − 1)ρ(u

2+v2)
2p2 q 1

p − (γ − 1)q ρ(u2+v2)
2p2 − 2Y

ρ

−(γ − 1)ρup2 (γ − 1)q ρu
p2

−(γ − 1)ρvp2 (γ − 1)q ρv
p2

(γ − 1) ρ
p2 −(γ − 1)q ρ

p2

−(γ − 1)q ρ
p2 (γ − 1)q2 ρ

p2 + 2
ρ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(2.12)

which can be straightforwardly proved to be strictly convex as Theorem 2.1. The
entropy potentials can be computed as ψ1 := V TF−φ1 = ρu and ψ2 := V TG−φ2 =
ρv.
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3. Entropy stable schemes in 1D

Based on the strictly convex entropy above, in this section we construct second-
and high-order finite difference entropy stable schemes within the framework of [31].
Here we consider 1D reactive Euler equations and the 2D case will be discussed in
the next section.

We employ a uniform Cartesian mesh {xi} with mesh size Δx = xi+1 − xi and
the point values are denoted as Ui. Set xi+1/2 = 1

2 (xi+1 + xi) and partition the
domain into intervals Ii = [xi−1/2, xi+1/2]. A conservative finite difference method
updating point values of the solution U for (2.1) has the form

(3.1)
d

dt
Ui(t) = − 1

Δx
(Fi+1/2(t)− Fi−1/2(t)) +Q(Ui(t)),

where Fi+1/2 is the numerical flux at the interface xi+1/2.

Following [31], the scheme (3.1) is said to be entropy preserving1 if it satisfies a
discrete entropy equality

(3.2)
d

dt
η(Ui(t)) = − 1

Δx
(φ̃i+1/2 − φ̃i−1/2) + ηU (Ui(t))Q(Ui(t))

for some numerical entropy flux φ̃i+1/2 consistent with φ. Denote by V := ∂Uη the

entropy variable and by ψ(U) := V (U)TF (U)− φ(U) the entropy potential. With
notations

�a�i+1/2 = ai+1 − ai, {{a}}1/2 =
1

2
(ai+1 + ai),

we have [31]

Theorem 3.1. Assume that a consistent numerical flux F̃i+1/2 satisfies

(3.3) �V �Ti+1/2F̃i+1/2 = �ψ�i+1/2.

Then the scheme with numerical flux F̃i+1/2 is second-order accurate and entropy
preserving with the entropy flux given by

(3.4) φ̃i+1/2 = {{V }}Ti+1/2F̃i+1/2 − {{ψ}}i+1/2.

Based on the entropy preserving numerical flux, an entropy stable scheme is built
by adding appropriate dissipation terms as follows [31].

Theorem 3.2. If the numerical flux of the scheme (3.1) is defined as

(3.5) F̂i+1/2 = F̃i+1/2 −
1

2
Di+1/2�V �i+1/2,

where F̃i+1/2 satisfies the entropy preserving condition (3.3) and Di+1/2 is a semi-
positive definite matrix, then the scheme (3.1) is first-order accurate and satisfies

d

dt
η(Ui(t)) +

1

Δx
(φ̂i+1/2 − φ̂i−1/2)

= − 1

4Δx
(�V �Ti+1/2Di+1/2�V �i+1/2 + �V �Ti−1/2Di−1/2�V �i−1/2) + ηU (Ui(t))Q(Ui(t))

≤ ηU (Ui(t))Q(Ui(t)) ≤ 0.

(3.6)

1Here we use “entropy preserving” instead of “entropy conservative” due to the source term
in (2.5) or (3.2).
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Here

(3.7) φ̂i+1/2 = φ̃i+1/2 −
1

2
{{V }}Ti+1/2Di+1/2�V �i+1/2

and φ̃i+1/2 is the entropy flux associated with F̃i+1/2 in (3.4).

3.1. Two-point entropy preserving flux. In the following we derive two-point
entropy preserving flux F̃i+1/2 = F̃(Ui(t), Ui+1(t)) that satisfies condition (3.3). To
simplify notations, we drop the subscript i+ 1/2 and write (3.3) as

(3.8) �V �T F̃ = �ψ�.

Following [22, 28], we introduce the logarithmic average

{{a}}ln =
�a�

�ln(a)�

and have the identities

�ab� = �a�{{b}}+ �b�{{a}}, �ln(a)� = �a�/{{a}}ln.
With these, we construct two sets of entropy preserving flux by extending those in
[5, 28] for the Euler equations.

Let V = (V 1, V 2, V 3, V 4)T and F̃ = (F̃1, F̃2, F̃3, F̃4)T . Define a set of algebraic
variables [22, 28]

(3.9) z =

⎛
⎜⎜⎜⎜⎜⎝

z1

z2

z3

z4

⎞
⎟⎟⎟⎟⎟⎠ =

√
ρ

p

⎛
⎜⎜⎜⎜⎜⎜⎝

1

u

p

Y
√

p
ρ

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Following the procedure in [22, 28], we write each jump term in (3.8) in terms of
jumps of the algebraic variables:

�V 1� = �
γ − s

γ − 1
− ρu2

2p
− Y 2�

= �
γ − ln( z

3

z1 ) + γ ln(z1z3)

γ − 1
− 1

2
(z2)2 − (z4)2�

=
γ + 1

γ − 1
�ln(z1)� + �ln(z3)� − 1

2
�(z2)2� − �(z4)2�

=
γ + 1

γ − 1

�z1�

{{z1}}ln +
�z3�

{{z3}}ln − {{z2}}�z2� − 2{{z4}}�z4�,

�V 2� = �
ρu

p
� = �z1z2� = {{z2}}�z1� + {{z1}}�z2�,

�V 3� = �−ρ

p
� = �−(z1)2� = −2{{z1}}�z1�,

�V 4� = �q
ρ

p
+ 2Y � = �−q(z1)2 + 2z4� = −2q{{z1}}�z1� + 2�z4�,

�ψ� = �z2z3� = {{z3}}�z2� + {{z2}}�z3�,
where the identities above have been used. Substituting these expressions into (3.8)
and matching the coefficients of �zl�, l = 1, 2, 3, 4, we obtain a set of linear equations
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with respect to F̃l, l = 1, 2, 3, 4:

γ + 1

γ − 1

1

{{z1}}ln F̃
1 + {{z2}}F̃2 − 2{{z1}}F̃3 − 2q{{z1}}F̃4 = 0,

− {{z2}}F̃1 + {{z1}}F̃2 = {{z3}},
1

{{z3}}ln F̃
1 = {{z2}},

− 2{{z4}}F̃1 + 2F̃4 = 0.

Then F̃l can be solved out as

F̃1 = {{z2}}{{z3}}ln,

F̃2 =
{{z3}}
{{z1}} +

{{z2}}
{{z1}} F̃

1,

F̃3 =
1

2

γ + 1

γ − 1

1

{{z1}}{{z1}}ln F̃
1 +

1

2

{{z2}}
{{z1}} F̃

2 + qF̃4,

F̃4 = {{z4}}F̃1.

(3.10)

It is easy to see that this set of numerical flux, satisfying the entropy preserving
condition (3.8), is consistent with F (U) in (2.1). When F̃4 = 0, F̃l, l = 1, 2, 3
degenerate to those for the Euler equations in [22, 28].

Next we construct another set of entropy preserving flux by defining the algebraic
variables as [5]

(3.11) z =

⎛
⎜⎜⎜⎜⎜⎝

z1

z2

z3

z4

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

ρ

u

ρ
p

Y

⎞
⎟⎟⎟⎟⎟⎠ .

With the same procedure above, we use these algebraic variables to derive the
following entropy preserving flux:

F̃1 = {{z1}}ln{{z2}},

F̃2 =
{{z1}}
{{z3}} + {{z2}}F̃1,

F̃3 =

(
1

(γ − 1){{z3}}ln − 1

2
{{(z2)2}}

)
F̃1 + {{z2}}F̃2 + qF̃4,

F̃4 = {{z4}}F̃1.

(3.12)

When F̃4 = 0, F̃l, l = 1, 2, 3 degenerate to those for the Euler equations in [5].
Except for the preserving of entropy, an additional property of this set of flux is
that it is kinetic-energy preserving (KEP) in the sense of Jameson [23], which is
useful in turbulent flow simulations [30]. Specifically, note that the momentum flux

F̃2 can be written as F̃2 = p̃ + {{u}}F̃1, where p̃ := {{z1}}
{{z3}} is a consistent pressure
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average. With this, we have

∑
i

Δx
d( 12ρu

2)i

dt
=

∑
i

Δx

[
−1

2
u2
i

dρi
dt

+ ui
d(ρu)i
dt

]

=
∑
i

Δx

[
1

2
u2
i (F̃

1
i+1/2 − F̃1

i−1/2)− ui(F̃
2
i+1/2 − F̃2

i−1/2)

]

=
∑
i

Δx

[
1

2
(u2

i − u2
i+1)F̃

1
i+1/2 − (ui − ui+1)F̃

2
i+1/2

]

=
∑
i

Δx(ui+1 − ui)p̃i+1/2,

which is consistent with the kinetic energy equation d
dt

∫
1
2ρu

2dx =
∫
p∂u
∂xdx. In

this sense, the flux (3.12) is KEP.

3.2. Dissipation matrix. Although Theorem 3.2 holds for any semi-positive def-
inite Dj+1/2, a popular choice is to recast Roe’s dissipation term R|Λ|R−1�U� to
D�V � in terms of the entropy variable, where R is the matrix of eigenvectors of the
flux Jacobian ∂UF and |Λ| = diag(|λ1|, |λ2|, . . . , |λM |) with λi the eigenvalues of
∂UF .

Denote A = ∂UF and note that ηUUA is symmetric as η is strictly convex.
Assume that we have already obtained a complete set of (row) eigenvectors L̃ such

that A = L̃−1ΛL̃, where Λ = diag(λ1, λ2, . . . , λM ) and λi are the eigenvalues of A.
Thanks to the strict convexity of the entropy, i.e., ηUU is positive definite, there
exists a symmetric block diagonal matrix G that block scales the eigenvectors L̃ in
such a manner that (see Barth’s eigenscaling theorem in [2])

A = (GL̃)−1Λ(GL̃), ηUU = (GL̃)T (GL̃).

The dimensions of the blocks of G correspond to the multiplicities of the eigenvalues
λi. It follows from the above equation that G = (L̃−T ηUU L̃

−1)
1
2 , which can be easily

obtained without directly computing η−1
UU since G2 = L̃−T ηUU L̃

−1 is block diagonal.

With the above L̃ and G, we define R = (GL̃)−1 = L̃−1G−1 and then

(3.13) A = RΛR−1, ηUU = R−TR−1.

Thus we have

R|Λ|R−1dU = R|Λ|R−1η−1
UUdV = R|Λ|RT dV

and Roe’s dissipation term in terms of the entropy variable is

D�V �, D = R|Λ|RT .

If |Λ| is replaced by max{|λ1|, |λ2|, . . . , |λM |}I with I the unit matrix, then we
obtain the Rusanov-type dissipation term

D�V �, D = max{|λ1|, |λ2|, . . . , |λM |}RRT = max{|λ1|, |λ2|, . . . , |λM |}η−1
UU .

The key step of constructing the above dissipation terms is to compute the
eigenvector matrix R satisfying (3.13). In the following we derive such R for the

reactive Euler equations (2.1). Let H = E + p
ρ = γ

γ−1
p
ρ + 1

2u
2 + qY and c =

√
γ p
ρ .
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The flux Jacobian A = ∂UF of the reactive Euler equations (2.1) can be computed
as

A =

⎛
⎜⎜⎝

0 1 0 0
γ−3
2 u2 (3− γ)u γ − 1 −(γ − 1)q

γ−1
2 u3 −Hu H − (γ − 1)u2 γu −(γ − 1)qu
−uY Y 0 u

⎞
⎟⎟⎠ ,

the eigenvalues of which are u, u, u+ c and u− c. Based on the widely used eigen-
system (see e.g. [24]) for the Euler equations, we obtain the following left and right
eigenvectors of A:

L̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1− γ−1
2

u2

c2 (γ − 1) u
c2 −γ−1

c2 q γ−1
c2

−γ−1
2

u2

c2 Y (γ − 1) u
c2Y −γ−1

c2 Y 1 + q γ−1
c2

γ−1
4

u2

c2 − 1
2
u
c −γ−1

2
u
c2 + 1

2c
γ−1
2c2 −q γ−1

2c2

γ−1
4

u2

c2 + 1
2
u
c −γ−1

2
u
c2 − 1

2c
γ−1
2c2 −q γ−1

2c2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

R̃ = L̃−1 =

⎛
⎜⎜⎝

1 0 1 1
u 0 u+ c u− c

1
2u

2 q H + uc H − uc
0 1 Y Y

⎞
⎟⎟⎠ ,

(3.14)

which satisfy L̃AR̃ = diag(u, u, u+ c, u− c). It is direct to compute that

G2 = L̃−T ηUU L̃
−1 = diag(C,

2γ

ρ
,
2γ

ρ
), C =

(
γ

γ−1
1
ρ + 2Y 2

ρ −2Y
ρ

−2Y
ρ

2
ρ

)
.

The 2 × 2 matrix C can be diagonalized as C = M diag(ζ1, ζ2)M
T , where ζ1, ζ2 =

1
ρ (

3γ−2
2γ−2 + Y 2)± 1

ρ

√
( 3γ−2
2γ−2 + Y 2)2 − 2γ

γ−1 and M is a unitary matrix given by

M =

⎛
⎝ ζ1ρ−2√

(ζ1ρ−2)2+4Y 2

ζ2ρ−2√
(ζ2ρ−2)2+4Y 2

2Y√
(ζ1ρ−2)2+4Y 2

2Y√
(ζ2ρ−2)2+4Y 2

⎞
⎠ .

Then we have

C− 1
2 :=

(
g1 g2
g2 g3

)
= M diag(

1√
ζ1

,
1√
ζ2

)MT

and

R = R̃G
−1

=

⎛
⎜⎜⎜⎜⎜⎜⎝

g1 g2
√

ρ
2γ

√
ρ
2γ

ug1 ug2 (u + c)
√

ρ
2γ (u − c)

√
ρ
2γ

1
2u

2g1 + qg2
1
2u

2g2 + qg3 (H + uc)
√

ρ
2γ (H − uc)

√
ρ
2γ

g2 g3 Y
√

ρ
2γ Y

√
ρ
2γ

⎞
⎟⎟⎟⎟⎟⎟⎠

, η
−1
UU = RR

T
,

with which the dissipation matrix D and the dissipation term can be computed.

3.3. High-order entropy stable schemes. The semi-discrete entropy preserv-
ing scheme with the two-point flux F̃i+1/2 is only second-order accurate, while the

entropy stable scheme with flux F̂i+1/2 is only first-order accurate due to the dis-
sipation term. In this subsection high-order entropy preserving/stable fluxes are
constructed based on the two-point fluxes following [16, 25].
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3.3.1. High-order entropy preserving flux. The high-order entropy preserving flux
is defined as a linear combination of two-point fluxes [25]:

(3.15) F̃2k
i+1/2 =

k∑
r=1

αk,r

r−1∑
s=0

F̃(Ui−s, Ui−s+r)

with constants αk,r satisfying

(3.16)

k∑
r=1

rαk,r = 1,

k∑
r=1

r2s−1αk,r = 0, s = 2, . . . , k.

For example, the fourth- and sixth-order fluxes are

F̃4
i+1/2 =

4

3
F̃(Ui, Ui+1)−

1

6
(F̃(Ui−1, Ui+1) + F̃(Ui, Ui+2)),

F̃6
i+1/2 =

3

2
F̃(Ui, Ui+1)−

3

10
(F̃(Ui−1, Ui+1) + F̃(Ui, Ui+2))

+
1

30
(F̃(Ui−2, Ui+1) + F̃(Ui−1, Ui+2) + F̃(Ui, Ui+3)).

It is direst to see the consistence of the flux (3.15) by using the first condition in
(3.16). Additionally, under the conditions (3.16), the scheme with flux (3.15) has
2k-th order accuracy [25].

We show the entropy preserving property by computing

V
T
i (F̃

2k
i+1/2 − F̃

2k
i−1/2) =

k∑
r=1

αk,rV
T
i (F̃(Ui, Ui+r) − F̃(Ui−r, Ui))

=
k∑

r=1

αk,r

[(
Vi + Vi+r

2
−

Vi+r − Vi

2

)T

F̃(Ui, Ui+r) −
(

Vi + Vi−r

2
+

Vi − Vi−r

2

)T

F̃(Ui−r , Ui)

]

=

k∑
r=1

αk,r

[
Vi + Vi+r

2
· F̃(Ui, Ui+r) −

1

2
�ψ�i+r,i −

Vi + Vi−r

2
· F̃(Ui−r , Ui) −

1

2
�ψ�i,i−r

]

=
k∑

r=1

αk,r

[(
Vi + Vi+r

2
· F̃(Ui, Ui+r) − {{ψ}}i+r,i

)
−

(
Vi + Vi−r

2
· F̃(Ui−r , Ui) − {{ψ}}i,i−r

)]
.

Thus the discrete entropy flux is

(3.17) φ̃2k
i+1/2 =

k∑
r=1

αk,r

(
Vi + Vi+r

2
· F̃(Ui, Ui+r)− {{ψ}}i+r,i

)

and the scheme is entropy preserving with the discrete entropy equality given by

d

dt
η(Ui(t)) = − 1

Δx
(φ̃2k

i+1/2 − φ̃2k
i−1/2) + ηU (Ui(t))Q(Ui(t)).

3.3.2. High-order entropy stable flux. With the high-order entropy preserving flux
above, we follow [16] to construct high-order entropy stable fluxes by adding high-
order dissipation terms based on ENO and WENO reconstructions. The high-order
entropy stable flux based on ENO is defined as [16]

(3.18) F̂i+1/2 = F̃2k
i+1/2 −

1

2
Ri+1/2|Λi+1/2| � ω �ENO

i+1/2

with F̃2k
i+1/2 the 2k-th order entropy preserving flux in (3.15) and � ω �ENO

i+1/2
:=

ω+
i+1/2 − ω−

i+1/2. Here ω+
i+1/2 and ω−

i+1/2 are the right and left limiting values of

the scaled entropy variables ω := RT
i+1/2V at the interface xi+1/2, respectively, and
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they are obtained by 2k-th order ENO reconstruction. It is shown in [17] that the
ENO reconstruction satisfies the sign property

(3.19) sign(� ω �ENO
i+1/2) = sign(�ω�i+1/2).

With this, the entropy stable property of the ENO based flux (3.18) can be shown
by computing

V T
i (F̂i+1/2 − F̂i−1/2)

= V T
i (F̃2k

i+1/2 − F̃2k
i−1/2)

− 1

2
V T
i Ri+1/2|Λi+1/2| � ω �ENO

i+1/2 +
1

2
V T
i Ri−1/2|Λi−1/2| � ω �ENO

i−1/2

= φ̃2k
i+1/2 − φ̃2k

i−1/2 −
1

2
({{V }}i+1/2 −

1

2
�V �i+1/2)

TRi+1/2|Λi+1/2| � ω �ENO
i+1/2

+
1

2
({{V }}i−1/2 +

1

2
�V �i+1/2)

TRi−1/2|Λi−1/2| � ω �ENO
i−1/2

=

(
φ̃2k
i+1/2 −

1

2
{{V }}Ti+1/2Ri+1/2|Λi+1/2| � ω �ENO

i+1/2

)

−
(
φ̃2k
i−1/2 −

1

2
{{V }}Ti−1/2Ri−1/2|Λi−1/2| � ω �ENO

i−1/2

)

+
1

4

(
�V �Ti+1/2Ri+1/2|Λi+1/2| � ω �ENO

i+1/2

+{{V }}Ti−1/2Ri−1/2|Λi−1/2| � ω �ENO
i−1/2

)
= φ̂ENO

i+1/2 − φ̂ENO
i−1/2 +

1

4

(
�ω�Ti+1/2|Λi+1/2| � ω �ENO

i+1/2

+�ω�Ti−1/2|Λi−1/2| � ω �ENO
i−1/2

)
,

where

φ̂ENO
i+1/2 = φ̃2k

i+1/2 −
1

2
{{V }}Ti+1/2Ri+1/2|Λi+1/2| � ω �ENO

i+1/2 .

Thus we arrive at

dη(Ui)

dt
+

φ̂ENO
i+1/2 − φ̂ENO

i−1/2

Δx

= − 1

4Δx

(
�ω�Ti+1/2|Λi+1/2| � ω �ENO

i+1/2 +�ω�Ti−1/2|Λi−1/2| � ω �ENO
i−1/2

)
+ V T

i Q(Ui(t))

≤ V T
i Q(Ui(t)) ≤ 0,

where − 1
4Δx

(
�ω�Ti+1/2|Λi+1/2| � ω �ENO

i+1/2 +�ω�Ti−1/2|Λi−1/2| � ω �ENO
i−1/2

)
≤ 0

thanks to the sign property (3.19). This indicates that the flux (3.18) guarantees
the entropy stable property.
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The WENO based high-order entropy stable flux is defined as [3]

(3.20) F̂i+1/2 = F̃2k
i+1/2 −

1

2
Ri+1/2|Λi+1/2| � ω �WENO

i+1/2 ,

where the l-th component of the � ω �WENO
i+1/2 is given by

� ωl �WENO
i+1/2 = θl,i+1/2(ω

+
l,i+1/2 − ω−

l,i+1/2),

θl,i+1/2 :=

{
1, (ω+

l,i+1/2 − ω−
l,i+1/2)�ωl�i+1/2 > 0,

0, otherwise.

(3.21)

Here ω+
l,i+1/2 and ω−

l,i+1/2 denote, respectively, the right and left limiting values of

ωl at the interface xi+1/2 by using the (2k − 1)-th order WENO reconstruction.
Though the standard WENO reconstruction may not satisfy the sign property, the
switch operator θl,i+1/2 ensures that

(3.22) sign(� ω �WENO
l,i+1/2 ) = sign(�ω�l,i+1/2).

With this relation, the entropy stable property can be proved in the same way as
for the ENO based flux.

4. Entropy stable schemes in 2D

In this section, we construct entropy preserving/stable schemes for the 2D reac-
tive Euler equations (2.8). The construction is similar to the 1D case and the key is
to derive the two-point entropy preserving flux and the matrix R in the dissipation
term.

4.1. Two-point entropy preserving flux. As for the 1D case, here we propose
two sets of entropy preserving fluxes satisfying

(4.1) �V �Ti+1/2,jF̃i+1/2,j = �ψ1�i+1/2,j , �V �Ti,j+1/2G̃i,j+1/2 = �ψ2�i,j+1/2,

where F̃i+1/2,j and G̃i,j+1/2 are numerical fluxes consistent with F (U) and G(U),
respectively. Define algebraic variables

(4.2) z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

z1

z2

z3

z4

z5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

√
ρ

p

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

u

v

p

Y

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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By writing each jump term in (4.1) in terms of jumps of the algebraic variables and
matching the coefficients, we obtain

F̃1
i+1/2,j = {{z2}}i+1/2,j{{z4}}lni+1/2,j ,

F̃2
i+1/2,j =

{{z4}}i+1/2,j

{{z1}}i+1/2,j
+

{{z2}}i+1/2,j

{{z1}}i+1/2,j
F̃1

i+1/2,j ,

F̃3
i+1/2,j =

{{z3}}i+1/2,j

{{z1}}i+1/2,j
F̃1

i+1/2,j ,

F̃4
i+1/2,j =

1

2

γ + 1

γ − 1

1

{{z1}}i+1/2,j{{z1}}lni+1/2,j

F̃1
i+1/2,j +

1

2

{{z2}}i+1/2,j

{{z1}}i+1/2,j
F̃2

i+1/2,j

+
1

2

{{z3}}i+1/2,j

{{z1}}i+1/2,j
F̃3

i+1/2,j + qF̃5
i+1/2,j ,

F̃5
i+1/2,j = {{z

5

z1
}}i+1/2,jF̃

1
i+1/2,j ,

G̃1
i,j+1/2 = {{z3}}i,j+1/2{{z4}}lni,j+1/2,

G̃2
i,j+1/2 =

{{z2}}i,j+1/2

{{z1}}i,j+1/2
G̃1

i,j+1/2,

G̃3
i,j+1/2 =

{{z4}}i,j+1/2

{{z1}}i,j+1/2
+

{{z3}}i,j+1/2

{{z1}}i,j+1/2
G̃1

i,j+1/2,

G̃4
i,j+1/2 =

1

2

γ + 1

γ − 1

1

{{z1}}i,j+1/2{{z1}}lni,j+1/2

G̃1
i,j+1/2 +

1

2

{{z2}}i,j+1/2

{{z1}}i,j+1/2
G̃2

i,j+1/2

+
1

2

{{z3}}i,j+1/2

{{z1}}i,j+1/2
G̃3

i,j+1/2 + qG̃5
i,j+1/2,

G̃5
i,j+1/2 = {{z

5

z1
}}i,j+1/2G̃

1
i,j+1/2.

(4.3)

On the other hand, if the algebraic variables are taken as

(4.4) z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

z1

z2

z3

z4

z5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ρ

u

v

ρ
p

Y

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
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then the corresponding entropy preserving flux can be derived as

F̃1
i+1/2,j = {{z1}}lni+1/2,j{{z2}}i+1/2,j ,

F̃2
i+1/2,j =

{{z1}}i+1/2,j

{{z4}}i+1/2,j
+ {{z2}}i+1/2,jF̃

1
i+1/2,j ,

F̃3
i+1/2,j = {{z3}}i+1/2,jF̃

1
i+1/2,j ,

F̃4
i+1/2,j =

(
1

(γ − 1){{z4}}lni+1/2,j

− 1

2
{{(z2)2 + (z3)2}}i+1/2,j

)
F̃1

i+1/2,j

+ {{z2}}i+1/2,jF̃
2
i+1/2,j + {{z3}}i+1/2,jF̃

3
i+1/2,j + qF̃5

i+1/2,j ,

F̃5
i+1/2,j = {{z5}}i+1/2,jF̃

1
i+1/2,j ,

G̃1
i,j+1/2 = {{z1}}lni,j+1/2{{z3}}i,j+1/2,

G̃2
i,j+1/2 = {{z2}}i,j+1/2G̃

1
i,j+1/2,

G̃3
i,j+1/2 =

{{z1}}i,j+1/2

{{z4}}i,j+1/2
+ {{z3}}i,j+1/2G̃

1
i,j+1/2,

G̃4
i,j+1/2 =

(
1

(γ − 1){{z4}}lni,j+1/2

− 1

2
{{(z2)2 + (z3)2}}i,j+1/2

)
G̃1

i,j+1/2

+ {{z2}}i,j+1/2G̃
2
i,j+1/2 + {{z3}}i,j+1/2G̃

3
i,j+1/2 + qG̃5

i,j+1/2,

G̃5
i,j+1/2 = {{z5}}i,j+1/2G̃

1
i,j+1/2.

(4.5)

Similar to the 1D case, this set of fluxes preserves both entropy and kinetic energy.

4.2. Dissipation matrix. Let H = E + p
ρ = γ

γ−1
p
ρ + 1

2 (u
2 + v2) + qY and c =√

γ p
ρ . The flux Jacobian A = ∂UF of the 2D reactive Euler equations (2.8) can be

computed as

A =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
γ−3
2 u2 + γ−1

2 v2 (3− γ)u (1− γ)v γ − 1 −(γ − 1)q
−uv v u 0 0

γ−1
2 (u2 + v2)u−Hu H − (γ − 1)u2 −(γ − 1)uv γu −(γ − 1)qu

−uY Y 0 0 u

⎞
⎟⎟⎟⎟⎠ ,
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the eigenvalues of which are u, u, u, u+ c and u− c. The left and right eigenvectors
of A can be computed as

L̃A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− γ−1
2

u2+v2

c2 (γ − 1) u
c2 (γ − 1) v

c2 −γ−1
c2 q γ−1

c2

−v 0 1 0 0

−γ−1
2

u2+v2

c2 Y (γ − 1) u
c2 Y (γ − 1) v

c2Y −γ−1
c2 Y 1 + q γ−1

c2 Y

γ−1
4

u2+v2

c2 − 1
2
u
c −γ−1

2
u
c2 + 1

2c −γ−1
2

v
c2

γ−1
2c2 −q γ−1

2c2

γ−1
4

u2+v2

c2 + 1
2
u
c −γ−1

2
u
c2 − 1

2c −γ−1
2

v
c2

γ−1
2c2 −q γ−1

2c2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

R̃A = L̃−1
A =

⎛
⎜⎜⎜⎜⎝

1 0 0 1 1
u 0 0 u+ c u− c
v 1 0 v v

1
2 (u

2 + v2) v q H + uc H − uc
0 0 1 Y Y

⎞
⎟⎟⎟⎟⎠ ,

(4.6)

which satisfy L̃AAR̃A = diag(u, u, u, u+ c, u− c).
The flux Jacobian B = ∂UG is

B =

⎛
⎜⎜⎜⎜⎝

0 0 1 0 0
−uv v u 0 0

γ−3
2 v2 + γ−1

2 u2 (1− γ)u (3− γ)v γ − 1 −(γ − 1)q
γ−1
2 (u2 + v2)v −Hv −(γ − 1)uv H − (γ − 1)v2 γv −(γ − 1)qv

−vY 0 Y 0 v

⎞
⎟⎟⎟⎟⎠ .

It can be diagonalized as

L̃BBR̃B = diag(v, v, v, v + c, v − c)

with

L̃B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− γ−1
2

u2+v2

c2 (γ − 1) u
c2 (γ − 1) v

c2 −γ−1
c2 q γ−1

c2

−u 1 0 0 0

−γ−1
2

u2+v2

c2 Y (γ − 1) u
c2Y (γ − 1) v

c2Y −γ−1
c2 Y 1 + q γ−1

c2 Y

γ−1
4

u2+v2

c2 − 1
2
v
c −γ−1

2
u
c2 −γ−1

2
v
c2 + 1

2c
γ−1
2c2 −q γ−1

2c2

γ−1
4

u2+v2

c2 + 1
2
v
c −γ−1

2
u
c2 −γ−1

2
v
c2 − 1

2c
γ−1
2c2 −q γ−1

2c2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

R̃B = L̃−1
B =

⎛
⎜⎜⎜⎜⎝

1 0 0 1 1
u 1 0 u u
v 0 0 v + c v − c

1
2 (u

2 + v2) u q H + vc H − vc
0 0 1 Y Y

⎞
⎟⎟⎟⎟⎠ .

(4.7)
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It is direct to compute that

G2 := L̃−T
A ηUU L̃

−1
A = L̃−T

B ηUU L̃
−1
B = diag(C,

2γ

ρ
,
2γ

ρ
),

C =

⎛
⎜⎝

γ
γ−1

1
ρ + 2Y 2

ρ 0 −2Y
ρ

0 1
p 0

−2Y
ρ 0 2

ρ

⎞
⎟⎠ .

The 3× 3 matrix C can be diagonalized as C = M diag(ζ1, ζ2,
1
p )M

T , where ζ1, ζ2 =

1
ρ (

3γ−2
2γ−2 + Y 2)± 1

ρ

√
( 3γ−2
2γ−2 + Y 2)2 − 2γ

γ−1 and M is a unitary matrix given by

M =

⎛
⎜⎜⎝

ζ1ρ−2√
(ζ1ρ−2)2+4Y 2

ζ2ρ−2√
(ζ2ρ−2)2+4Y 2

0

0 0 1
2Y√

(ζ1ρ−2)2+4Y 2

2Y√
(ζ2ρ−2)2+4Y 2

0

⎞
⎟⎟⎠ .

Then we have

C− 1
2 = M diag(

1√
ζ1

,
1√
ζ2

,
√
p)MT :=

⎛
⎝ g1 0 g2

0
√
p 0

g2 0 g3

⎞
⎠

and

RA = R̃AG
−1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1 0 g2
√

ρ
2γ

√
ρ
2γ

ug1 0 ug2 (u + c)
√

ρ
2γ

(u − c)
√

ρ
2γ

vg1
√

p vg2 v
√

ρ
2γ

v
√

ρ
2γ

1
2
(u2 + v2)g1 + qg2 v

√
p 1

2
(u2 + v2)g2 + qg3 (H + uc)

√
ρ
2γ

(H − uc)
√

ρ
2γ

g2 0 g3 Y
√

ρ
2γ

Y
√

ρ
2γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

RB = R̃BG−1
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1 0 g2
√

ρ
2γ

√
ρ
2γ

ug1
√
p ug2 u

√
ρ
2γ

u
√

ρ
2γ

vg1 0 vg2 (v + c)
√

ρ
2γ

(v − c)
√

ρ
2γ

1
2
(u2 + v2)g1 + qg2 u

√
p 1

2
(u2 + v2)g2 + qg3 (H + vc)

√
ρ
2γ

(H − vc)
√

ρ
2γ

g2 0 g3 Y
√

ρ
2γ

Y
√

ρ
2γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which satisfy RAR
T
A = RBR

T
B = η−1

UU . With RA and RB, the dissipation matrices
can be computed as for the 1D case (see subsection 3.2).

Having the two-point entropy preserving fluxes and dissipation matrices, we can
directly construct high-order entropy preserving/stable schemes in two dimensions.
The construction is the same as for the 1D case and we refer to e.g. [35] for the
details.

5. Numerical results

This section is devoted to the validation of our entropy preserving/stable schemes
based on both the Tadmor flux and the KEP flux for 1D and 2D reactive Euler
equations. For simplicity, we only take k = 3 and validate the sixth-order en-
tropy preserving scheme and the fifth-order entropy stable scheme with (fifth-order)
WENO reconstruction, which are referred to as EP6 and ES5, respectively. The
third-order implicit-explicit Runge-Kutta method in [1] is employed for the time
discretization. Four examples are used to demonstrate the designed accuracy of
all the schemes as well as the ability of entropy stable schemes for problems with
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discontinuities. In all the examples, the parameters of the reactive Euler equations
are chosen following [13, 33]:

γ = 1.2, q = 50, T̃ = 50, K̃ = 2566.4.

Except for Example 2, periodic boundary conditions are employed to avoid the
effect of boundaries.

Example 1 (1D smooth problem). We first test the accuracy of our schemes
through a 1D smooth problem with exact solution

(5.1) ρ = 1 + 0.3 sin(2π(x− t)), u = 1, p = 1, Y = 0

in the domain [0, 1]. We take the mesh size as Δx = 1/20, 1/40, 1/80, 1/160 and
set Δt = Δx2 and Δt = Δx5/3 for the EP6 and ES5, respectively. The L1 and L∞

errors at t = 0.1 are listed in Table 1. We observe that for both the Tadmor flux
and the KEP flux the designed sixth- and fifth-order convergence is obtained for
the EP6 and ES5 scheme, respectively. Additionally, the errors of the two fluxes
are very close and have the same values at the first decimal place.

Table 1. Error table for 1D smooth problem with exact solution (5.1)

Tadmor flux EP6
Δx L1 error order L∞ error order
1/20 2.7360e-06 9.3507e-06
1/40 4.8079e-08 5.8305 1.9061e-07 5.6164
1/80 7.7813e-10 5.9493 3.1416e-09 5.9230
1/160 1.2265e-11 5.9874 4.9729e-11 5.9813

Tadmor flux ES5
Δx L1 error order L∞ error order
1/20 2.0015e-04 4.3710e-04
1/40 2.5855e-05 2.9525 5.3814e-05 3.0219
1/80 1.5148e-06 4.0933 3.7037e-06 3.8610
1/160 1.6687e-08 6.5042 4.7931e-08 6.2719

KEP flux EP6
Δx L1 error order L∞ error order
1/20 2.7362e-06 9.3508e-06
1/40 4.8077e-08 5.8306 1.9061e-07 5.6164
1/80 7.7812e-10 5.9492 3.1416e-09 5.9230
1/160 1.2266e-11 5.9873 4.9733e-11 5.9811

KEP flux EP5
Δx L1 error order L∞ error
1/20 2.0148e-04 4.1394e-04
1/40 2.5574e-05 2.9778 5.3044e-05 2.9642
1/80 1.5086e-06 4.0834 3.7063e-06 3.8391
1/160 1.6687e-08 6.4983 4.7875e-08 6.2746
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Example 2 (1D problem with discontinuities). In this test, we consider the Rie-
mann type initial conditions

(5.2) (ρ, u, p, Y ) =

{
(1, 0, 1, 0) if x < 0,
(0.125, 0, 0.1, 0) if x > 0,

where the initial data of ρ, u, p are the same as those of Sod’s problem for the Euler
equations [29]. The computational domain is [−5, 5] and we take the mesh size as
Δx = 1/16. The numerical solutions at t = 2 with CFL=0.5 for the ES5 scheme
are plotted in Fig. 1. It can be seen that the results of the Tadmor flux and the
KEP flux are almost the same and the discontinuities are well captured without
oscillations. As expected, the total numerical entropy

∑
i η̂(Ui(t))Δx decreases

with respect to time; see Fig. 2. We also observe from Fig. 1 that the reactant mass
fraction Y oscillates slightly and becomes negative around the contact discontinuity.
The magnitude of the oscillation is reduced under a smaller mesh size Δx = 1/160
in our numerical experiments. These indicate that the present schemes do not
guarantee the positivity of Y . Enforcing both the positivity of solution and the ES
property will be our next target.
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Figure 1. Example 2: Computational results at t = 2 with Δx = 1/16

Example 3 (2D smooth problem). In the following, we validate our schemes for
2D problems. As for the 1D case, we first test the accuracy with the exact solution

(5.3) ρ = 1 + 0.3 sin(2π(x+ y − t)), u = 1, v = 0, p = 1, Y = 0
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Figure 2. Example 2: Evolution of the total numerical entropy

in a square domain [0, 1] × [0, 1]. The mesh sizes are Δx = 1/20, 1/40, 1/80, 1/160
and the time steps are Δt = Δx2,Δx5/3 for the EP6 and ES5, respectively. Table 2
lists the errors at t = 0.01, from which designed convergence orders can be observed
for both the Tadmor flux and the KEP flux. Similar to the 1D case, the errors of
the two fluxes are also very close. These demonstrate the accuracy of our schemes
for 2D problems.

Figure 3. Example 4: Contours of different variables at t = 0.04
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Table 2. Error table for 2D smooth problem with exact solution (5.3)

Tadmor flux EP6
Δx L1 error order L∞ error order
1/20 2.7913e-07 1.0150e-06
1/40 4.8688e-09 5.8412 1.9297e-08 5.7170
1/80 7.7978e-11 5.9643 3.1515e-10 5.9361
1/160 1.2275e-12 5.9893 4.9808e-12 5.9835

Tadmor flux EP5
Δx L1 error order L∞ error order
1/20 8.4400e-05 2.5753e-04
1/40 9.2748e-06 3.1858 3.8804e-05 2.7305
1/80 4.1865e-07 4.4695 2.1626e-06 4.1654
1/160 8.9274e-09 5.5514 4.4572e-08 5.6005

KEP flux EP6
Δx L1 error order L∞ error order
1/20 2.7914e-07 1.0150e-06
1/40 4.8686e-09 5.8414 1.9296e-08 5.7170
1/80 7.7978e-11 5.9643 3.1515e-10 5.9361
1/160 1.2275e-12 5.9892 4.9812e-12 5.9834

KEP flux EP5
Δx L1 error order L∞ error order
1/20 8.5440e-05 3.3197e-04
1/40 8.8719e-06 3.2676 3.0030e-05 3.4666
1/80 4.2291e-07 4.3908 2.2207e-06 3.7573
1/160 8.8464e-09 5.5791 4.6625e-08 5.5737

Example 4 (2D problem with discontinuities). In this example, we test our schemes
for a 2D problem containing discontinuities. The computational domain is [−1, 1]×
[−1, 1] and the initial data is given by

(5.4) (ρ, u, v, p, Y ) =

{
(1, 0, 0, 80, 0.2), x2 + y2 ≤ 0.36,
(1, 0, 0, 10, 0.8), otherwise,

which is taken from [39]. In the computation we employ the ES5 scheme with a
mesh size Δx = 1/100 and CFL = 0.2. Again, the results of the Tadmor flux
and the KEP flux are very similar. The contour plots of ρ, u, p, Y at t = 0.04
obtained with the Tadmor flux are given in Fig. 3 and the solutions along the
horizontal line y = 0 are plotted in Fig. 4. We see that the von Neumann spike
is clearly resolved. Additionally, as shown in Fig. 5 the total numerical entropy∑

i,j η̂(Ui,j(t))Δx decreases with respect to time, supporting that our schemes are
entropy stable.

6. Conclusions and remarks

In this paper, we present entropy analysis and high-order ES finite difference
schemes for the reactive Euler equations in both one- and two-dimensions on a
Cartesian mesh. First, we show that the thermodynamic entropy is no longer
strictly convex for the reactive Euler equations. To address this issue, we propose
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Figure 4. Example 4: Solutions along the horizontal line y = 0
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Figure 5. Example 4: Evolution of the total numerical entropy

a strictly convex entropy function by adding an extra term to the thermodynamic
entropy. As a result, a new entropy-entropy flux pair is obtained. Thanks to the
strict convexity of the proposed entropy, the Roe-type dissipation operator in terms
of the entropy variables can be formulated [28]. Note that such dissipation operators
are not available based on the thermodynamic entropy, as it is not strictly convex.

Furthermore, we construct two sets of second-order EP fluxes by extending those
in [5, 28] for the Euler equations within the framework of [31]. In particular, the
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EP fluxes extended from [5] are also KEP. With the EP fluxes and the Roe-type
dissipation operators, high-order EP/EC fluxes are derived following [17,25], where
the sign-preserving ENO [16] and WENO [3] reconstructions are employed for the
high-order dissipation operators. Numerical experiments in 1D and 2D validate the
designed accuracy and good performance for smooth and discontinuous problems.
The entropy decrease of ES schemes is verified as well.

We would like to point out that for the reactive Euler equations as hyperbolic
balance laws, the strict convexity of entropy function is crucial for the global exis-
tence of solution [36]. The present strictly convex entropy may be helpful for the
theoretical analysis of the reactive Euler equations. On the other hand, we observe
that the proposed schemes do not guarantee the positivity of the reactant mass
fraction. This may be overcome with the positivity limiters in [37, 38]. These will
be the topic of our work in the future.
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